Arterial Coil Embolization and Arterialization of the Portal Vein for a Ruptured Hepatic Artery after Partial Hepatectomy

From: Fumiyasu Tsushima, PhD, MD
Akihisa Kakuta, MD, PhD
Daisuke Kudo, MD, PhD
Keinosuke Ishido, MD, PhD
Kenichi Hakamada, MD, PhD
Departments of Radiology (F.T., A.K.) and Gastroenterological Surgery (D.K., K.I., K.H.)
Hirosaki University Graduate School of Medicine
5 Zaifu-cho
Hirosaki, Aomori 036-8562, Japan

Editor:
Although arterial embolization is often necessary for hemostasis, hepatic arterial ischemia results in liver necrosis in the absence of collaterals. In such cases, portal vein arterialization preserves arterial flow to the liver, avoiding the complications of ischemia, necrosis, and liver failure.

Institutional review board approval was obtained for this study, and the requirement for informed consent was waived. A 64-year-old man underwent left hepatectomy (left lobe and caudate lobe resection) for bile duct carcinoma. On day 28, he presented with upper gastrointestinal bleeding. Computed tomography showed bleeding from the proper hepatic artery. Emergency angiography confirmed bleeding from the proper hepatic artery (Fig 1). The distal hepatic artery could not be catheterized. Therefore, embolization of the proper hepatic artery was performed using 2 4-mm-diameter \(\times \) 120-mm-long TRUFILL DCS ORBIT GALAXY coils (Codman Neuro, Raynham, Massachusetts) (Fig 2). Collateral hepatic arteries were not observed (Fig 3). Embolization was followed by creation of a surgical ileocolic arteriovenous shunt the same day. The ilioceleic artery and vein underwent end-to-end anastomosis (Fig 4). Before embolization, the patient’s aspartate aminotransferase was 37 U/L and alanine aminotransferase was 17 U/L. Immediately after embolization, aspartate aminotransferase increased to 980 U/L, and alanine aminotransferase increased

Figure 1. Angiography of celiac artery. Active bleeding is seen at the proper hepatic artery (arrow).

Figure 2. Angiography of celiac artery. Bleeding stopped after coil embolization (arrow).

Figure 3. Angiography of right inferior phrenic artery. The collateral hepatic artery was not observed.

None of the authors have identified a conflict of interest.

https://doi.org/10.1016/j.jvir.2018.01.001
to 569 U/L. The next day, aspartate aminotransferase was 365 U/L, and alanine aminotransferase was 445 U/L. After 13 days, the patient’s transaminases normalized. Ultrasound showed increased hepatic arterial blood flow. Repeat angiography performed 4 weeks later demonstrated collateral hepatic arteries (Fig 5), at which point the shunt was occluded using a 3.5-mm-diameter × 90-mm-long TRUFILL DCS ORBIT GALAXY coil and 2.4-mm-diameter × 120-mm-long Tornado coils (Cook Inc, Tokyo, Japan) (Fig 6a, b). The patient was discharged on hospital day 47 after significant improvement. The patient remained asymptomatic with normal transaminases and hepatic arterial flow on Doppler ultrasound.

Hemorrhage from the hepatic artery is a life-threatening complication after hepatectomy (1). Although arterial embolization is useful, hepatic arterial interruption inevitably causes fatal liver hypoxia when all collateral arteries to the liver have been eradicated. Sato et al (2) reported that morbidity and mortality rates of hepatic arterial embolization were 45% and 30%, respectively, without hepatic collaterals. In general, the extensive collateral pathways, including the inferior phrenic arteries, intercostal arteries, and gastric arteries, serve to protect the liver from ischemic insult. Teramoto et al (3) reported a case of arterial embolization and portal vein arterialization for hemorrhage after pancreaticoduodenectomy. Portal vein arterialization may result in portal hypertension causing gastrointestinal bleeding, which can be treated by embolization of the shunt (4). Portal vein arterialization is a salvage technique, increasing the oxygen saturation of portal vein blood and preventing hepatic ischemia in this patient with an occluded...
proper hepatic artery. In summary, portal vein arterialization may potentially reduce the risk of ischemia in patients undergoing arterial embolization for treatment of postoperative bleeding after liver resection.

ACKNOWLEDGMENTS

This work was supported by the Japanese Society for the Promotion of Science KAKENHI Grant No. JP16K19800.

REFERENCES

Salvage Periaortic Bovine Pericardial Baffle: Normal Postsurgical Anatomy and Complicating Aortic Fistula Diagnosed with CT Angiography

From: Kellan Schallert, MD
Patrick T. Norton, MD
Michael Hanley, MD
Klaus D. Hagspiel, MD
Lucia Flors, MD, PhD
Department of Radiology and Medical Imaging (K.S., P.T.N., M.H., K.D.H., L.F.), University of Virginia Health System Charlottesville, Virginia; and
Department of Radiology (L.F.), University of Missouri Health System
One Hospital Dr., DC 069.10
Columbia, MO 65212

Editor:

Periaortic bovine pericardial baffle is a salvage technique to control intractable intraoperative bleeding after ascending aortic surgery. We describe and illustrate the normal postsurgical computerized tomography (CT) appearance and present the case of a 41-year-old man with aortic endocarditis and complicating aortic fistula after creation of a periaortic bovine pericardial baffle during aortic root replacement. This study was approved by the local Institutional Review Board with a waiver of consent.

Placement of a periaortic baffle, constructed of bovine or autologous pericardium, is a salvage technique first